74     avg_distance_(avg_distance),
    75     center_index_(center_index)
    82     avg_distance_(rhs.avg_distance_),
    83     center_index_(rhs.center_index_)
   105     if (size_ > rhs.
size_) 
return true;
   106     if (size_ < rhs.
size_) 
return false;
   122     return *
this < rhs || rhs < *
this;
   128     return !(*
this != rhs);
   146     return avg_distance_;
   152     return center_index_;
   196     void group(
const std::vector<FeatureMap>& maps, 
ConsensusMap& out) 
override;
   203     void group(
const std::vector<ConsensusMap>& maps,
   215       return "unlabeled_kd";
   231     template <
typename MapType>
   232     void group_(
const std::vector<MapType>& input_maps, 
ConsensusMap& out);
   238     void updateClusterProxies_(std::set<ClusterProxyKD>& potential_clusters, std::vector<ClusterProxyKD>& cluster_for_idx, 
const std::set<Size>& update_these, 
const std::vector<Int>& assigned, 
const KDTreeFeatureMaps& kd_data);
 
A functor class for the calculation of distances between features or consensus features. 
Definition: FeatureDistance.h:89
 
A more convenient string class. 
Definition: String.h:57
 
double avg_distance_
Average distance to center. 
Definition: FeatureGroupingAlgorithmKD.h:161
 
Size center_index_
Index of center point. 
Definition: FeatureGroupingAlgorithmKD.h:164
 
ClusterProxyKD(Size size, double avg_distance, Size center_index)
Constructor. 
Definition: FeatureGroupingAlgorithmKD.h:72
 
ClusterProxyKD & operator=(const ClusterProxyKD &rhs)
Assignment operator. 
Definition: FeatureGroupingAlgorithmKD.h:93
 
static FeatureGroupingAlgorithm * create()
Creates a new instance of this class (for Factory) 
Definition: FeatureGroupingAlgorithmKD.h:207
 
FeatureDistance feature_distance_
Feature distance functor. 
Definition: FeatureGroupingAlgorithmKD.h:259
 
static String getProductName()
Returns the product name (for the Factory) 
Definition: FeatureGroupingAlgorithmKD.h:213
 
double mz_tol_
m/z tolerance 
Definition: FeatureGroupingAlgorithmKD.h:253
 
Stores a set of features, together with a 2D tree for fast search. 
Definition: KDTreeFeatureMaps.h:49
 
bool isValid() const
Valid? 
Definition: FeatureGroupingAlgorithmKD.h:138
 
A container for consensus elements. 
Definition: ConsensusMap.h:75
 
ptrdiff_t SignedSize
Signed Size type e.g. used as pointer difference. 
Definition: Types.h:134
 
Proxy for a (potential) cluster. 
Definition: FeatureGroupingAlgorithmKD.h:58
 
bool mz_ppm_
m/z unit ppm? 
Definition: FeatureGroupingAlgorithmKD.h:256
 
Main OpenMS namespace. 
Definition: FeatureDeconvolution.h:46
 
bool operator<(const ClusterProxyKD &rhs) const
Less-than operator for sorting / equality check in std::set. We use the ordering in std::set as a "pr...
Definition: FeatureGroupingAlgorithmKD.h:103
 
Size size_
Cluster size. 
Definition: FeatureGroupingAlgorithmKD.h:158
 
SignedSize progress_
Current progress for logging. 
Definition: FeatureGroupingAlgorithmKD.h:247
 
Base class for all feature grouping algorithms. 
Definition: FeatureGroupingAlgorithm.h:49
 
~ClusterProxyKD()
Destructor (non-virtual to save memory) 
Definition: FeatureGroupingAlgorithmKD.h:88
 
bool operator==(const ClusterProxyKD &rhs) const
Equality operator. 
Definition: FeatureGroupingAlgorithmKD.h:126
 
ClusterProxyKD()
Default constructor. 
Definition: FeatureGroupingAlgorithmKD.h:64
 
double rt_tol_secs_
RT tolerance. 
Definition: FeatureGroupingAlgorithmKD.h:250
 
Size getSize() const
Cluster size. 
Definition: FeatureGroupingAlgorithmKD.h:132
 
A feature grouping algorithm for unlabeled data. 
Definition: FeatureGroupingAlgorithmKD.h:178
 
size_t Size
Size type e.g. used as variable which can hold result of size() 
Definition: Types.h:127
 
Base class for all classes that want to report their progress. 
Definition: ProgressLogger.h:54
 
double getAvgDistance() const
Average distance to center. 
Definition: FeatureGroupingAlgorithmKD.h:144
 
ClusterProxyKD(const ClusterProxyKD &rhs)
Copy constructor. 
Definition: FeatureGroupingAlgorithmKD.h:80
 
Size getCenterIndex() const
Index of center point. 
Definition: FeatureGroupingAlgorithmKD.h:150
 
bool operator!=(const ClusterProxyKD &rhs) const
Inequality operator. 
Definition: FeatureGroupingAlgorithmKD.h:120