All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
PosteriorErrorProbabilityModel.h
Go to the documentation of this file.
1 // Copyright (c) 2002-present, OpenMS Inc. -- EKU Tuebingen, ETH Zurich, and FU Berlin
2 // SPDX-License-Identifier: BSD-3-Clause
3 //
4 // --------------------------------------------------------------------------
5 // $Maintainer: Timo Sachsenberg $
6 // $Authors: David Wojnar $
7 // --------------------------------------------------------------------------
8 
9 #pragma once
10 
18 
19 #include <vector>
20 #include <map>
21 
22 namespace OpenMS
23 {
24  class String;
25  class TextFile;
26  class PeptideIdentification;
27  class ProteinIdentification;
28  class PeptideHit;
29  class PeptideIdentificationList;
30  namespace Math
31  {
32 
33 
50  class OPENMS_DLLAPI PosteriorErrorProbabilityModel :
51  public DefaultParamHandler
52  {
53 public:
54 
57 
60 
72  static std::map<String, std::vector<std::vector<double>>> extractAndTransformScores(
73  const std::vector<ProteinIdentification> & protein_ids,
74  const PeptideIdentificationList & peptide_ids,
75  const bool split_charge,
76  const bool top_hits_only,
77  const bool target_decoy_available,
78  const double fdr_for_targets_smaller);
79 
93  static void updateScores(
94  const PosteriorErrorProbabilityModel & PEP_model,
95  const String & search_engine,
96  const Int charge,
97  const bool prob_correct,
98  const bool split_charge,
99  std::vector<ProteinIdentification> & protein_ids,
100  PeptideIdentificationList & peptide_ids,
101  bool & unable_to_fit_data,
102  bool & data_might_not_be_well_fit);
103 
113  bool fit(std::vector<double>& search_engine_scores, const String& outlier_handling);
114 
124  bool fitGumbelGauss(std::vector<double>& search_engine_scores, const String& outlier_handling);
125 
134  bool fit(std::vector<double>& search_engine_scores, std::vector<double>& probabilities, const String& outlier_handling);
135 
137  void fillDensities(const std::vector<double> & x_scores, std::vector<double> & incorrect_density, std::vector<double> & correct_density);
139  void fillLogDensities(const std::vector<double> & x_scores, std::vector<double> & incorrect_density, std::vector<double> & correct_density);
141  void fillLogDensitiesGumbel(const std::vector<double> & x_scores, std::vector<double> & incorrect_density, std::vector<double> & correct_density);
143  double computeLogLikelihood(const std::vector<double> & incorrect_density, const std::vector<double> & correct_density) const;
144 
152  const std::vector<double>& incorrect_log_density,
153  const std::vector<double>& correct_log_density,
154  std::vector<double>& incorrect_posterior) const;
155 
162  std::pair<double, double> pos_neg_mean_weighted_posteriors(const std::vector<double> &x_scores,
163  const std::vector<double> &incorrect_posteriors);
164 
172  std::pair<double, double> pos_neg_sigma_weighted_posteriors(const std::vector<double> &x_scores,
173  const std::vector<double> &incorrect_posteriors,
174  const std::pair<double, double>& pos_neg_mean);
175 
178  {
179  return correctly_assigned_fit_param_;
180  }
181 
184  {
185  return incorrectly_assigned_fit_param_;
186  }
187 
190  {
191  return incorrectly_assigned_fit_gumbel_param_;
192  }
193 
195  double getNegativePrior() const
196  {
197  return negative_prior_;
198  }
199 
201  static double getGumbel_(double x, const GaussFitter::GaussFitResult & params)
202  {
203  double z = exp((params.x0 - x) / params.sigma);
204  return (z * exp(-1 * z)) / params.sigma;
205  }
206 
211  double computeProbability(double score) const;
212 
214  TextFile initPlots(std::vector<double> & x_scores);
215 
218 
221 
224 
226  void plotTargetDecoyEstimation(std::vector<double> & target, std::vector<double> & decoy);
227 
229  inline double getSmallestScore() const
230  {
231  return smallest_score_;
232  }
233 
235  void tryGnuplot(const String& gp_file);
236 
237 private:
239  void processOutliers_(std::vector<double>& x_scores, const String& outlier_handling) const;
240 
245  static double transformScore_(const String& engine, const PeptideHit& hit, const String& current_score_type);
246 
251  static double getScore_(const std::vector<String>& requested_score_types, const PeptideHit & hit, const String& actual_score_type);
252 
271  const String (PosteriorErrorProbabilityModel::* getNegativeGnuplotFormula_)(const GaussFitter::GaussFitResult & params) const;
273  const String (PosteriorErrorProbabilityModel::* getPositiveGnuplotFormula_)(const GaussFitter::GaussFitResult & params) const;
274  };
275  }
276 }
277 
A base class for all classes handling default parameters.
Definition: DefaultParamHandler.h:66
Implements a mixture model of the inverse gumbel and the gauss distribution or a gaussian mixture.
Definition: PosteriorErrorProbabilityModel.h:52
std::pair< double, double > pos_neg_mean_weighted_posteriors(const std::vector< double > &x_scores, const std::vector< double > &incorrect_posteriors)
double computeLLAndIncorrectPosteriorsFromLogDensities(const std::vector< double > &incorrect_log_density, const std::vector< double > &correct_log_density, std::vector< double > &incorrect_posterior) const
static void updateScores(const PosteriorErrorProbabilityModel &PEP_model, const String &search_engine, const Int charge, const bool prob_correct, const bool split_charge, std::vector< ProteinIdentification > &protein_ids, PeptideIdentificationList &peptide_ids, bool &unable_to_fit_data, bool &data_might_not_be_well_fit)
update score entries with PEP (or 1-PEP) estimates
const String getBothGnuplotFormula(const GaussFitter::GaussFitResult &incorrect, const GaussFitter::GaussFitResult &correct) const
returns the gnuplot formula of the fitted mixture distribution.
GumbelMaxLikelihoodFitter::GumbelDistributionFitResult incorrectly_assigned_fit_gumbel_param_
Definition: PosteriorErrorProbabilityModel.h:259
PosteriorErrorProbabilityModel & operator=(const PosteriorErrorProbabilityModel &rhs)
assignment operator (not implemented)
TextFile initPlots(std::vector< double > &x_scores)
initializes the plots
const String getGaussGnuplotFormula(const GaussFitter::GaussFitResult &params) const
returns the gnuplot formula of the fitted gauss distribution.
void plotTargetDecoyEstimation(std::vector< double > &target, std::vector< double > &decoy)
plots the estimated distribution against target and decoy hits
static double transformScore_(const String &engine, const PeptideHit &hit, const String &current_score_type)
GaussFitter::GaussFitResult incorrectly_assigned_fit_param_
stores parameters for incorrectly assigned sequences. If gumbel fit was used, A can be ignored....
Definition: PosteriorErrorProbabilityModel.h:258
double max_correctly_
peak of the gauss distribution (correctly assigned sequences)
Definition: PosteriorErrorProbabilityModel.h:267
double computeProbability(double score) const
void fillDensities(const std::vector< double > &x_scores, std::vector< double > &incorrect_density, std::vector< double > &correct_density)
Writes the distributions densities into the two vectors for a set of scores. Incorrect_densities repr...
bool fit(std::vector< double > &search_engine_scores, const String &outlier_handling)
fits the distributions to the data points(search_engine_scores). Estimated parameters for the distrib...
PosteriorErrorProbabilityModel(const PosteriorErrorProbabilityModel &rhs)
Copy constructor (not implemented)
bool fit(std::vector< double > &search_engine_scores, std::vector< double > &probabilities, const String &outlier_handling)
fits the distributions to the data points(search_engine_scores) and writes the computed probabilities...
static double getScore_(const std::vector< String > &requested_score_types, const PeptideHit &hit, const String &actual_score_type)
GaussFitter::GaussFitResult getIncorrectlyAssignedFitResult() const
returns estimated parameters for correctly assigned sequences. Fit should be used before.
Definition: PosteriorErrorProbabilityModel.h:183
double getNegativePrior() const
returns the estimated negative prior probability.
Definition: PosteriorErrorProbabilityModel.h:195
const String getGumbelGnuplotFormula(const GaussFitter::GaussFitResult &params) const
returns the gnuplot formula of the fitted gumbel distribution. Only x0 and sigma are used as local pa...
void fillLogDensities(const std::vector< double > &x_scores, std::vector< double > &incorrect_density, std::vector< double > &correct_density)
Writes the log distributions densities into the two vectors for a set of scores. Incorrect_densities ...
double negative_prior_
stores final prior probability for negative peptides
Definition: PosteriorErrorProbabilityModel.h:263
static std::map< String, std::vector< std::vector< double > > > extractAndTransformScores(const std::vector< ProteinIdentification > &protein_ids, const PeptideIdentificationList &peptide_ids, const bool split_charge, const bool top_hits_only, const bool target_decoy_available, const double fdr_for_targets_smaller)
extract and transform score types to a range and score orientation that the PEP model can handle
void fillLogDensitiesGumbel(const std::vector< double > &x_scores, std::vector< double > &incorrect_density, std::vector< double > &correct_density)
Writes the log distributions of gumbel and gauss densities into the two vectors for a set of scores....
~PosteriorErrorProbabilityModel() override
Destructor.
void tryGnuplot(const String &gp_file)
try to invoke 'gnuplot' on the file to create PDF automatically
void processOutliers_(std::vector< double > &x_scores, const String &outlier_handling) const
transform different score types to a range and score orientation that the model can handle (engine st...
GaussFitter::GaussFitResult correctly_assigned_fit_param_
stores gauss parameters
Definition: PosteriorErrorProbabilityModel.h:261
double max_incorrectly_
peak of the incorrectly assigned sequences distribution
Definition: PosteriorErrorProbabilityModel.h:265
PosteriorErrorProbabilityModel()
default constructor
GaussFitter::GaussFitResult getCorrectlyAssignedFitResult() const
returns estimated parameters for correctly assigned sequences. Fit should be used before.
Definition: PosteriorErrorProbabilityModel.h:177
static double getGumbel_(double x, const GaussFitter::GaussFitResult &params)
computes the gumbel density at position x with parameters params.
Definition: PosteriorErrorProbabilityModel.h:201
double smallest_score_
smallest score which was used for fitting the model
Definition: PosteriorErrorProbabilityModel.h:269
std::pair< double, double > pos_neg_sigma_weighted_posteriors(const std::vector< double > &x_scores, const std::vector< double > &incorrect_posteriors, const std::pair< double, double > &pos_neg_mean)
double getSmallestScore() const
returns the smallest score used in the last fit
Definition: PosteriorErrorProbabilityModel.h:229
bool fitGumbelGauss(std::vector< double > &search_engine_scores, const String &outlier_handling)
fits the distributions to the data points(search_engine_scores). Estimated parameters for the distrib...
GumbelMaxLikelihoodFitter::GumbelDistributionFitResult getIncorrectlyAssignedGumbelFitResult() const
returns estimated parameters for correctly assigned sequences. Fit should be used before.
Definition: PosteriorErrorProbabilityModel.h:189
double computeLogLikelihood(const std::vector< double > &incorrect_density, const std::vector< double > &correct_density) const
computes the Likelihood with a log-likelihood function.
Represents a single spectrum match (candidate) for a specific tandem mass spectrum (MS/MS).
Definition: PeptideHit.h:50
Container for peptide identifications from multiple spectra.
Definition: PeptideIdentificationList.h:66
A more convenient string class.
Definition: String.h:34
Definition: TextFile.h:21
int Int
Signed integer type.
Definition: Types.h:72
Main OpenMS namespace.
Definition: openswathalgo/include/OpenMS/OPENSWATHALGO/DATAACCESS/ISpectrumAccess.h:19
struct of parameters of a Gaussian distribution
Definition: GaussFitter.h:40
double sigma
parameter sigma of Gaussian distribution (width)
Definition: GaussFitter.h:54
double x0
parameter x0 of Gaussian distribution (center position)
Definition: GaussFitter.h:51
struct to represent the parameters of a gumbel distribution
Definition: GumbelMaxLikelihoodFitter.h:38